Many-particle systems VIII. Saturation and a lower-bound shell model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1973 J. Phys. A: Math. Nucl. Gen. 6610
(http://iopscience.iop.org/0301-0015/6/5/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.73
The article was downloaded on 02/06/2010 at 04:44

Please note that terms and conditions apply.

Many-particle systems
 VIII. Saturation and a lower-bound shell model

G M Horton
Department of Physics, Chelsea College, University of London, London SW6, UK

MS received 14 September 1972

Abstract

The lower-bound shell model developed by Carr and Post is applied to a certain class of non-local two-body interactions and shows saturation. The case of the Yamaguchi interaction is worked out in detail.

1. Introduction

In this paper we prove that the lower-bound shell model established in paper VI (Carr and Post 1968) shows saturation for a certain class of non-local two-body interactions. These interactions are constructed in such a way that the two-body system has at most a finite number of bound states.

A specific instance of a non-local two-body interaction is worked out in detail. The two-body interaction is non-local, factorizable, and acts in S states only. In order to use the lower-bound shell model the total interaction must be expressible as a sum of two-body terms and is not factorizable itself. This particular example was used to discuss the deuteron by Yamaguchi (1954) and the three-nucleon problem by Mitra (1962, 1963).

2. Formulation of the problem

The N particle hamiltonian of the exact problem is

$$
H=\sum_{i=1}^{N} \frac{\boldsymbol{P}_{i}^{2}}{2 m}+\sum_{i<j=1}^{N} \sum_{i j}
$$

where m is the mass of each particle and the i th particle has momentum vector \boldsymbol{P}_{i}. The two-body interaction for particles i and $j, V_{i j}$, is translation invariant and spin independent. The last restriction is not essential but simplifies the discussion. In the momentum representation $V_{i j}$ is defined by

$$
V_{i j} \psi\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right)=\int V\left(\boldsymbol{P}_{i}-\boldsymbol{P}_{j} ; \boldsymbol{P}_{i}-\boldsymbol{P}_{j}^{\prime}\right) \prod_{k \neq i, j} \delta\left(\boldsymbol{P}_{k}-\boldsymbol{P}_{k}^{\prime}\right) \psi\left(\boldsymbol{P}_{1}^{\prime}, \ldots, \boldsymbol{P}_{N}^{\prime}\right) \mathrm{d} \tau^{\prime}
$$

$\psi\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right)$ is a translation invariant function of $3(N-1)$ relative momenta and $\mathrm{d} \tau^{\prime}$ is the volume element of the $3(N-1)$ dimensional momentum space. The function V is the same for all pairs of particles and the product of the delta functions ensures that
there is only interaction between particles i and j. Since the derivation of the lowerbound shell model involves letting the mass of particle 1 tend to infinity, it is important to note that there is no explicit dependence on the mass of each particle in the definition of $V_{i j}$.

The derivation of the lower-bound shell model in paper VI remains valid in the momentum representation and, since in our H the only explicit dependence on the mass of each particle is in the kinetic energy terms, we get a shell-model hamiltonian \mathscr{H}

$$
\begin{aligned}
& \mathscr{H}=\sum_{i=2}^{N} h_{i} \\
& h_{i}=\frac{P_{i}^{2}}{2 m}+\frac{N}{2} V_{1 i} .
\end{aligned}
$$

In the lower bound shell model particle one is fixed and the other ($N-1$) particles interact only with particle one by the one-body interaction $V_{1 j}$. The lower bound to the ground state energy E_{0} of the original N particle problem is given, in the case of fermions, by putting a particle in each state of the shell model. If ϵ_{i} are the energies of the states of particles moving in the field of particle one then

$$
\left|E_{0}\right| \leqslant \sum_{i=1}^{N-1}\left|\epsilon_{i}\right| .
$$

The sum is over the lowest $(N-1)$ states.
If the ϵ_{i} are such that $\lim _{N \rightarrow \infty}\left|\epsilon_{i}\right| / N$ is non-infinite, and if the number of bound states of the one-body problem does not exceed some fixed integer (n, say) then $\lim _{N \rightarrow \infty}\left|E_{0}\right| / N$ is non-infinite.

On the other hand, the $\lim _{N \rightarrow \infty}\left|E_{0}\right| / N$ can be assumed to be nonzero since E_{0} will be bounded from above by the energy of $\frac{1}{2} N$ independent pairs of particles and we may suppose the two-body problem to be bound.

In the next section we consider one-body potentials that have the desired properties. Thus, we will have shown that the lower-bound shell model shows saturation in the sense that $\lim _{N \rightarrow \infty}\left|E_{0}\right| / N$ is finite.

3. One-body problems with at most \boldsymbol{n} bound states

The one-particle Schrödinger wave equation in the momentum representation is

$$
\frac{\boldsymbol{P}^{2}}{2 m} \psi(\boldsymbol{P})+\int V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right) \mathrm{d} \boldsymbol{P}^{\prime} \psi\left(\boldsymbol{P}^{\prime}\right)=E \psi(\boldsymbol{P})
$$

The interaction must satisfy the usual invariance requirements and be hermitian

$$
V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)=V^{*}\left(\boldsymbol{P}^{\prime} ; \boldsymbol{P}\right)
$$

We now consider those functions $V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)$ that can be written in the form

$$
V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)=\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{P}) g_{i}\left(\boldsymbol{P}^{\prime}\right)
$$

where the λ_{i} are numbers and the $f_{i}(\boldsymbol{P})$ are n linearly independent functions. The $g_{i}\left(\boldsymbol{P}^{\prime}\right)$ are related to the $f_{i}(\boldsymbol{P})$ by the condition of hermiticity.

The wave equation is now

$$
\frac{\boldsymbol{P}^{2}}{2 m} \psi(\boldsymbol{P})+\sum_{i=1}^{n} \hat{\lambda}_{i} a_{i} f_{i}(\boldsymbol{P})=E \psi(\boldsymbol{P})
$$

where

$$
a_{i}=\int g_{i}\left(\boldsymbol{P}^{\prime}\right) \mathrm{d} \boldsymbol{P}^{\prime} \psi\left(\boldsymbol{P}^{\prime}\right) .
$$

The solution is

$$
\psi(\boldsymbol{P})=\sum_{i=1}^{n} \lambda_{i} a_{i} \frac{f_{i}(\boldsymbol{P})}{E-\boldsymbol{P}^{2} / 2 m}
$$

$\psi(\boldsymbol{P})$ is a linear combination of at most n linearly-independent functions and there can therefore be at most n linearly-independent solutions of the Schrödinger wave equation. It is necessary to impose conditions on the $f_{i}(\boldsymbol{P})$ and $g_{i}(\boldsymbol{P})$ such that the integrals defining the a_{i} exist and $\psi(\boldsymbol{P})$ be square integrable. If we choose $V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)$ to be a square integrable, symmetric function of \boldsymbol{P} and \boldsymbol{P} then it may be expanded in a doubly orthogonal series

$$
V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)=\sum_{i=1}^{\infty} \dot{\lambda}_{i} f_{i}(\boldsymbol{P}) f_{i}\left(\boldsymbol{P}^{\prime}\right)
$$

where the λ_{i} are real numbers and the $f_{i}(\boldsymbol{P})$ are members of an orthonormal set of squareintegrable functions (see eg Coleman 1963). The number of terms in the sum is unique if it is finite even though the $f_{i}\left(\boldsymbol{P}^{\prime}\right)$ are not unique. The solution $\psi(\boldsymbol{P})$ of the Schrödinger wave equation corresponds to a bound state for some values of the λ_{i} and m.

A special case of the above is

$$
V\left(\boldsymbol{P} ; \boldsymbol{P}^{\prime}\right)=-\lambda f(|\boldsymbol{P}|) f\left(\left|\boldsymbol{P}^{\prime}\right|\right)
$$

where i is a real number and f is a real function. This interaction acts in S states only since $\int f\left(\left|\boldsymbol{P}^{\prime}\right|\right) \psi\left(\boldsymbol{P}^{\prime}\right) \mathrm{d} \boldsymbol{P}^{\prime}$ vanishes unless $\psi\left(\boldsymbol{P}^{\prime}\right)$ has no dependence on the orientation of \boldsymbol{P}^{\prime}. It is also a factorizable interaction. The one-body problem has then at most one bound energy level. The solution of the Schrödinger wave equation is

$$
\psi(\boldsymbol{P})=-\frac{a \lambda f^{\prime}(|\boldsymbol{P}|)}{E-\boldsymbol{P}^{2} / 2 m} .
$$

For a bound state E is negative and so

$$
\begin{aligned}
& \psi(\boldsymbol{P})=\frac{a \lambda f(|\boldsymbol{P}|)}{\boldsymbol{P}^{2} / 2 m+|E|} \\
& a=\int f\left(\left|\boldsymbol{P}^{\prime}\right|\right) \psi\left(\boldsymbol{P}^{\prime}\right) \mathrm{d} \boldsymbol{P}^{\prime}=a \lambda \int \frac{f^{2}\left(\left|\boldsymbol{P}^{\prime}\right|\right) \mathrm{d} \boldsymbol{P}^{\prime}}{\boldsymbol{P}^{\prime 2} / 2 m+|E|}
\end{aligned}
$$

therefore

$$
\frac{1}{\lambda}=\int \frac{f^{2}\left(\left|\boldsymbol{P}^{\prime}\right|\right) \mathrm{d} \boldsymbol{P}^{\prime}}{\boldsymbol{P}^{\prime 2} / 2 m+|E|}
$$

The last relation can be solved to find $|E|$ in terms of λ. One can obtain $|E|$ proportional to λ, for large λ, by choosing $f(|\boldsymbol{P}|)$ suitably.

4. The Yamaguchi interaction and the lower-bound shell model

We choose for $f(|\boldsymbol{P}|)$ the form used by Yamaguchi

$$
f(|\boldsymbol{P}|)=\frac{1}{\boldsymbol{P}^{2}+\beta^{2}}
$$

where β is a constant.
The energy of the bound level is given by

$$
\frac{1}{\lambda}=\int \frac{4 \pi P^{2} \mathrm{~d} P}{\left(P^{2}+\beta^{2}\right)\left(P^{2} / 2 m+|E|\right)} \quad P=|P|
$$

After integration we find

$$
|E| \beta^{2}=\left(\sqrt{ }\left(\lambda \pi^{2} \beta\right)-\frac{\beta^{2}}{\sqrt{(2 m)}}\right)^{2}
$$

In the shell model the parameter λ is changed to $\hat{\lambda} N / 2$ so that the only bound energy level has energy ϵ_{0}

$$
\left|\epsilon_{0}\right| \beta^{2}=\left(\sqrt{ }\left(\frac{1}{2} \lambda N \pi^{2} \beta\right)-\frac{\beta^{2}}{\sqrt{(2 m)}}\right)^{2} .
$$

If the particles are fermions we may put two particles in each level or, if nucleons, we may put four particles in each level and we then have $E_{0} \geqslant \gamma \epsilon_{0}$ with $\gamma=2$ or 4 ,

$$
\lim _{N \rightarrow \infty} \frac{\left|E_{0}\right|}{N} \leqslant \lim _{N \rightarrow \infty} \frac{\gamma\left|\epsilon_{0}\right|}{N}=\frac{\gamma \lambda \pi^{2}}{2 \beta} .
$$

We also have

$$
\lim _{N \rightarrow \infty} \frac{\left|E_{0}\right|}{N} \geqslant \frac{1}{2}\left(\sqrt{ }\left(\lambda \pi^{2} \beta\right)-\frac{\beta^{2}}{\sqrt{m}}\right)^{2} \frac{1}{\beta^{2}}
$$

This latter estimate is given by considering $N / 2$ independent pairs of particles. Thus the shell model shows saturation.

This lower bound may be a poor approximation to the exact value for this interaction. One indication that the result will not be a good approximation for all values of λ, β and m is the fact that the lower bound for the energy per particle contains no dependence on m when we proceed to the limit $N=\infty$ whereas one would expect that as m was decreased the system would become unbound for some finite value of m independent of $N \dagger$.

5. Conclusion

It has been shown that the lower-bound shell model may be used to discuss saturation for a class of non-local interactions and, in particular, that the choice of the Yamaguchi interaction leads to saturation.

[^0]
Acknowledgments

The author thanks Professor H R Post for criticism of the manuscript and encouragement.

References

Carr R J M and Post H R 1968 J. Phys. A: Gen. Phys. 1 596-609
Coleman A J 1963 Rev. mod. Phys. 35 668-89
Mitra A N 1962 Nucl. Phys. 32 529-42
Yamaguchi Y 1954 Phys. Rev. 95 1628-34

[^0]: \dagger We are grateful to Dr R Huby for pointing out this latter fact.

