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Many-particle systems 
VIII. Saturation and a lower-bound shell model 

G M  Horton 
Department of Physics, Chelsea College, University of London, London SW6, U K  

MS received 14 September 1972 

Abstract. The lower-bound shell model developed by Carr and Post is applied to a certain 
class of non-local two-body interactions and shows saturation. The case of the Yamaguchi 
interaction is worked out in detail. 

1.  Introduction 

In this paper we prove that the lower-bound shell model established in paper VI (Carr 
and Post 1968) shows saturation for a certain class of non-local two-body interactions. 
These interactions are constructed in such a way that the two-body system has at most 
a finjte number of bound states. 

A specific instance of a non-local two-body interaction is worked out in detail. 
The two-body interaction is non-local, factorizable, and acts in S states only. In order 
to use the lower-bound shell model the total interaction must be expressible as a sum 
of two-body terms and is not factorizable itself. This particular example was used to 
discuss the deuteron by Yamaguchi (1954) and the three-nucleon problem by Mitra 
(1 962, 1963). 

2. Formulation of the problem 

The N particle hamiltonian of the exact problem is 
N D2 N 

where m is the mass of each particle and the ith particle has momentum vector P i .  
The two-body interaction for particles i and j, qj ,  is translation invariant and spin 
independent. The last restriction is not essential but simplifies the discussion. In the 
momentum representation qj is defined by 

qj$(Pl,. . . , P N )  = V ( P i - P j ; P ; - P ; )  n 6(Pk-4)$(P1,. . . ,P , )dT’.  s k # i , j  

$(Pi, . . . , P N )  is a translation invariant function of 3(N - 1) relative momenta and dT‘ 
is the volume element of the 3 ( N -  1) dimensional momentum space. The function I/ 
is the same for all pairs of particles and the product of the delta functions ensures that 
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there is only interaction between particles i and j .  Since the derivation of the lower- 
bound shell model involves letting the mass of particle 1 tend to infinity, it is important 
to note that there is no explicit dependence on the mass of each particle in the definition 

The derivation of the lower-bound shell model in paper VI remains valid in the 
momentum representation and, since in our H the only explicit dependence on the mass of 
each particle is in the kinetic energy terms, we get a shell-model hamiltonian 2 

of v j .  

N 

% = C h i  
i = 2  

In the lower bound shell model particle one is fixed and the other ( N  - 1) particles 
interact only with particle one by the one-body interaction Vlj. The lower bound to 
the ground state energy E ,  of the original N particle problem is given, in the case of 
fermions, by putting a particle in each state of the shell model. If ci  are the energies of 
the states of particles moving in the field of particle one then 

N - 1  

IEOI 1 IciI* 
i =  1 

The sum is over the lowest ( N  - 1) states. 
If the ci are such that limN+m Icil/N is non-infinite, and if the number of bound states 

of the one-body problem does not exceed some fixed integer (n, say) then limN+m IEJN 
is non-infinite. 

On the other hand, the lim,,,-m IE,I/N can be assumed to be nonzero since E ,  will 
be bounded from above by the energy of $N independent pairs of particles and we 
may suppose the two-body problem to be bound. 

In the next section we consider one-body potentials that have the desired properties. 
Thus, we will have shown that the lower-bound shell model shows saturation in the 
sense that limN+m 1E,I/N is finite. 

3. One-body problems with at most n bound states 

The one-particle Schrodinger wave equation in the momentum representation is 

P2 
- $ ( P ) + [  V ( P ;  P') dP'@(P') = E@(P). 2m 

The interaction must satisfy the usual invariance requirements and be hermitian 

V ( P ;  P) = V*(P'; P). 

We now consider those functions V ( P ;  P) that can be written in the form 
n 

V ( P ;  P') = 1 J-if;(P)gi(P) 
i =  1 

where the Ai are numbers and thef;.(P) are n linearly independent functions. The gi (P' )  
are related to the J ( P )  by the condition of hermiticity. 
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The wave equation is now 

P2 
-$(P)+ iiaifi(P) = E$(P) 

n 

2m i =  1 

where 

ai = s g,(P') dP'$(P'). 

The solution is 
n 

f i ( 4  $(P) = &Ui , = E - P2/2m' 

$(P) is a linear combination of at most I I  linearly-independent functions and there 
can therefore be at most n linearly-independent solutions of the Schrodinger wave 
equation. It is necessary to impose conditions on the J ( P )  and gi(P) such that the 
integrals defining the ai exist and $(P) be square integrable. If we choose V ( P ; P ' )  
to be a square integrable, symmetric function of P and P then it may be expanded in a 
doubly orthogonal series 

io 

V ( P ;  p') = 2 ;J;(P)fi(p') 
i =  1 

where the ii are real numbers and the fi(P) are members of an orthonormal set of square- 
integrable functions (see eg Coleman 1963). The number of terms in the sum is unique 
if it is finite even though the fi(P) are not unique. The solution $(P) of the Schrodinger 
wave equation corresponds to a bound state for some values of the ii and m. 

A special case of the above is 

V ( P ;  p') = ->.j'(IP/)f(lP'/) 

where i is a real number and f is a real function. This interaction acts in S states only 
since J f(lP'l)$(P') d P  vanishes unless $(P') has no dependence on the orientation of P'. 
I t  is also a factorizable interaction. The one-body problem has then at most one bound 
energy level. The solution of the Schrodinger wave equation is 

For a bound state E is negative and so 

therefore 

The last relation can be solved to find IEl in terms of i.. One can obtain ]El propor- 
tional to i., for large i,, by choosing f(lP1) suitably. 
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4. The Y amaguchi interaction and the lower-bound shell model 

We choose for f(l4) the form used by Yamaguchi 

where /? is a constant. 
The energy of the bound level is given by 

After integration we find 

In the shell model the parameter 1, is changed to iN/2 so that the only bound energy 
level has energy to  

If the particles are fermions we may put two particles in each level or, if nucleons, we 
may put four particles in each level and we then have E, > yc, with y = 2 or 4, 

We also have 

This latter estimate is given by considering N/2 independent pairs of particles. Thus 
the shell model shows saturation. 

This lower bound may be a poor approximation to the exact value for this inter- 
action. One indication that the result will not be a good approximation for all values 
of i, P and m is the fact that the lower bound for the energy per particle contains no 
dependence on m when we proceed to the limit N = CO whereas one would expect that 
as m was decreased the system would become unbound for some finite value of m 
independent of N t .  

5. Conclusion 

It has been shown that the lower-bound shell model may be used to discuss saturation 
for a class of non-local interactions and, in particular, that the choice of the Yamaguchi 
interaction leads to saturation. 

t We are grateful to Dr R Huby for pointing out this latter fact. 
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